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Space groups on the quantum torus 

Peter Gamer 
lnstitut fiir Theoretische Physik der Universit2t Tiibingen. Ttibmgen. Germany 

Received 9 May 1995, in final form 9 August 1995 

Abstract Space groups in two dimension arise from the commutative translation group Z2 and 
its automorphisms in GL(2. Z). From the free group F2 and its automorphisms we construct 17 
non-commutative gmups and their homomorphisms to the 17 space groups with commutative 
VanSlatiOilS. 

1. Introduction 

Any crystallographic space group G in 2D acts on the plane RZ and admits a  translation 
group with two commuting and independent generators. The translation group is isomorphic 
to Z2. The transversal (set of orbit representatives) of the action of the subgroup 2' < G 
on RZ is the unit cell R 2 / Z 2  which, upon appropriate identification of the edges, becomes 
the torus. The two generators of Zz generate the homotopy group of the torus. 

A non-commutative scheme is obtained if the translation group Z2 is replaced by the 
free group F2 with two generators (x[,xz). In the context of non-commutative geomehy 
with operator algebras proposed by Connes [I], the action and group algebra of F2 have 
led to the notion of a 'quantized rorus', cf Effros [Z] and [ l ,  p340-71. Note that this differs 
from the concept of a quantum group which involves a deformation parameter. 

In crystallographic terms, the group Z2 associated with the torus is denoted by P1. We 
denote its non-commutative generalization associated with the  quantum toms by Pl .= F z ~  
and look for other non-commutative space groups. We construct groups which 

( I )  admit an at least two-generator subgroup of F2, and 
(2)  admit a homomorphism to one of the 17 space groups of 2D crystallography. 

2. The automorphisms of the free group 

We shall work with elements and subgroups of Aut(F,) and its action on F,. Nielsen [4] 
showed that Aut(F,) is finitely generated. We shall use the involutive generators and the 
subgroup relations given in IS]. For general n, the group F, is isomorphic to Inn(F,). 
We denote by (TI, T2, . . .) the images in Aut(F,) of the generators (x,, XZ, . . .) under this 
isomorphism and interpret them as non-commutative translations. There are no finite-order 
elements in Inn(F,,), so we must look for them in the cosets. A method for finding the 
elements g E. Aut(F,) of finite order is described by McCool 171. For H < Aut(F,) of 
finite order, we can construct the semidirect product subgroup (Inn(F,) X , ~  H) < Aut(F,) 
which we call a symmorphic NC space group. The relation to crystallographic space groups 
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is governed by the two homomorphisms 
homl : F,, + Z" 
hornz: Aut(F,) - GL(n, Z )  

Given' an element of F,, that is a word W ( X I , X Z ,  ... ), its image under the 
Abelianization ham1 is found from the power sums (nl (w), nz(w), . . .) of the generators 
X I , , X ~ ,  ... in w.  An automorphism 4 E Aut(F,) is specified by giving the images 
YI(XI, X Z ,  . ..I, yz(x1, X Z ,  . . .), . . . . We compose automorphisms according to Nielsen 141. 
The image of 4 under homz is an n x n element from the matrix group GL(n,  2) whose 
entries are the power sums. In what follows we consider n = 2,3.  

3. 17 non-commutative space groups 

The homomorphism ham2 allows one to search for preimages of the space groups in the 
plane. A candidate for a non-commutative space group found in this way will be denoted 
by G c Aut(F2). The 17 space groups in the plane were described in terms of sets of 
generators and relations by Coxeter and Maser 181. We construct a preimage B for each 
space group G, with the same set of generators as Coxeter and Maser. The relators R 
are checked within Aut(F2) and fall into two classes: relators RI equal to unity both in 
G and in G, and relators Rz, equal to unity in G. The pairs of space groups are then 
G = (. . . [RI) and G = (. . . [RI. 722). respectively. The relators 7& determine in G the 
kernel ker(hom) a 0 of the specific homomorphism ham : 8 + G. We show that the 
relators Rz can always be reduced to the commutator K((Tl)*', (T*)*l), even if TI, T2 do 
not belong to the non-commutative translation group of G. Any space group G is now a 
factor group 

G = G/ ker(hom) . 
We give the 17 space groups in the order and notation of the International tables [9]. 

For,each group we first give alternative sets of generators ( a ) ,  (b) ,  . . . , as in [SI, with 
some changes of notation to avoid symbols used for Aut(F1). We use alternative sets of 
generators to display representative elements for each space group. Under (ham)-' we give 
in the next row a preimage in Aut(F2) for each generator, compare also section 4. Under 
R we give the relators R = (RI, 77.2). In the row that follows we give under ker for the 
relators Rz their expressions in Aut(F2). They determine elements of infinite order in 8. 

P l  
(4 X Y 

R xYx- 'Y- '  
ker K(Ti,T;') 

P2 
(4 X Y T 
(hom)-I TI T;' ala2 

ker K ( C ,  TF') 

(horn)-' S3 SZ SI 
R (ad2 (W2 (U1 UZUd* 
ker K(T;', r,) 

(hom)-l T;' (1) 

R T z  T X T X  T Y T Y  XYX-IY-I 

(b)  UI = Y T  U z = T  U , = X U z  
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X Y R 
Ti T;' 0 1  

R2 RXRX RYRY-' XYX-'Y-' 

P2mm 
(a ) 
(horn)-' 
R 
ker 
R 
ker 

(b) 

R 
ker 
'R 

Y 
T;' 
R2 

RzRRzR 

ker 



P4 
(a ) 
(horn)-' 
R 
ker 
R 
ker 

(b) 
(horn)-' 
R 
ker 
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P4gm 
(4 
(horn)-' 
R 
ker 
R 
ker 

(b) 
(horn)-' 
R 
ker 

P 3 m l  
(a ) 
(horn)-] 
R 
ker 

(b) 
(horn)-' 
R 
ker 
R 
ker 
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P3lm 
(a) 
(horn)-’ 
R 
ker 

(horn)-' 
R 
ker 

Pb 
(a) 
(horn)-' 
R 
ker 
(b) 
(horn)-’ 
R 
ker 

Pbm 

(6 )  

P Kramer 

(a ) RI Rz R3 R 
(horn)-' CIZTI C23 cl3 mr (17) 

ker K(T;’, T ; ] ) .  
R (RI)’ (Rd’ (R3)’ R2 ( R I R z ) ~  (RzRd3 ( R ~ R I ) ~  RRIRRz  RR3RR3 

We check the condition ( 1 )  given in the introduction. In equation (18 )  we give for 13 space 
groups the construction of T I ,  TZ from its generators. 

P l  PZ Pm Cm P2” C 2 ”  
TI : X X P R  Y-’ TRzRs 
Tz : Y-1 . Y-1 (RP)-’ R’R R J R z  

P4 P4mm P3 P3ml P3lm Pb Pbm 
TI : U4S2 R4Rz (Ui)-’U2 . (Ui)-’Uz R ~ R z R ~ R I  
Tz: S’Ul R3R1 Uz(Ul)-’ . Uz(ui)-’ R ~ R I R ~ R z .  

(18) 

It follows that the group Inn(&) forms a subgroup of these 13 goups 8. The non- 
symmorphic group Pg is the first exception. Its generators P ,  Q are not in Inn(F2) but yield 
the four elements T: = P Q ,  T,Tz = P Q - ] ,  TzT, = P - ’ Q ,  T; = P-’Q-’ of Inn(Fz). 
These four elements generate the subgroup of words of even length in Inn(&). Due to the 
presence of the generators P, Q, the same holds true for the groups PZmg, P2gg, P4gm. 
Upon Abelianization we are of course IeFt with two, not four translations. With this splitting 
into 13 + 4, all groups L7 match condition (1) given in the introduction. 

4. The geometric representation 

We pass to a geometric representation of the space groups. It is shown in [SI that the 
group Aut(&) may be lifted into an isomorphic image in Aut(%). Upon lifting an element 
of Aut(&) into Aut(F3) and then applying homz, one obtains a 3 x 3 block triangular 
matrix representative for the space group element. In the columns of the following (19) 
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we give for the generators (CZ3, C13, UI) of the lifted group Aut(Fz) the images (yl, yz, y3) 
of ( X I ,  x2,x3), each followed by the three power sums. The image under homz is then the 
3 x 3 matrix in GL(3,  2) formed from the three rows: 

e cu homz Cl3 homz Cl homz 

(19) X I  xtxz 1 1 0~ (xz)-l 0 -1 0 (x1)-l -1 0 0 
x2 (x * ) - I  0 -1 0 (x1)-I - 1  0 0 xz 0 1 0  
~3 ~ 2 x 3  0 1 1 ~ 1 ~ 2 x 3  1 1 1 x3 0 0 1 .  

In the expressions for the space group elements we use the following short-hand symbols, 
part of which appear in relation to subgroups of Aut(F3) [5 ] .  We express these 
automorphism as functions of the generators as follows: 

c12 := cz3c13cu U2 := C13UICl3 m” := 0 1 ~ 1 3 ~ 1  

sz := (C13UI) 

TI := SI S, 
s3 := cz3szc23 SI := c12szc1z (20) 
Tz := S&. 

Z 

The action on ( X I ,  x2,  x3) and the image under homz can be computed by group 
multiplication from these expressions and from (19). For convenience we give some results 
of this computation: 
e S, homz TI hom2 Tz homz 

(21) 
x ,  (xI)-I -1 0 0 XI 1 0 0 ( x z ) - ’ x l X z  1 0 0 
x2 (xz)-’ 0 -1 0 (xl)-Ix2xI 0 1 0 x 2  0 1 0  
.r3 ~ 2 x 3  o 2 1 x;’x;Ix;IxZx3 -2 0 .  1 X ; ~ X ~  0 -2 1 .  

By applying a matrix from G l ( 3 , Z )  from the left to a column formed by three vectors 
( ~ 1 . ~ 2 ,  x3). which geometrically represent the algebraic generators of F3, one obtains a 
linear action of the space group element on the plane spanned by (xl ,  x z ) .  The thud 
vector can then be suppressed. The automorphisms T I ,  TZ under homz are seen to map into 
translations by twice the length of the vectors which represent (x1, X Z ) .  In the following 
figures, the two vectors have been adapted so that the torus or unit cell corresponds to 
the setting of [9]. The rotation axes, and the generators of mirror and glide lines (full 
and broken lines) for each of the 17 space groups, are shown on the right, with symbols 

Figure 2 P2 and P2.  

FTjT /?/ 
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P 

_ _ _  _ _ _ _ _  _ _ _ _ _  _ _ _  _ _ _  --.Q 

---m--- ' ---El 
Figure 4. P g  and P g  

R 

Rz 

R,=R R,=R 
mgure 6.  P Z m m  and P 2 m m  

Figure 7. P 2 m g  and PZmg, 
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I 
R3 

I 
RI 

Fiere 8. P2gg and P2gg. 

Figure 9. CZmm and CZmm. 

Figure 10. P4 and P4. 

Figure 11. P4mm and P4mm. 

which represent typical generators and combinations from [SI and appear in the algebraic 
expressions of section 3. The left-hand side of each figure gives in the same geometry the 
two vectors ( X I ,  x?) ,  where XI starts at the end point of x2. Symbols 00 mark the preimages 
of infinite order in B for finite-order elements in G.  
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F i p  12. P4gm and P4gm. 

R=R3 

R,  

Figure 13. P 3  and P3. 

Figure 14. P3ml and P3ml .  

@ @  
Figure 15. P31m and P31m. 
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Figure 17. P6m and P6m. 

5. Conclusion 

We give some comments on the results. The distribution of infinite-order preimages for the 
rotation axes can be seen from the figures. We omit a corresponding discussion of mirror 
and glide lines. The group P 2  is the universal Coxeter group with three generators. In the 
groups P4gm, P4gm we mark one representative glide line. In P3ml compared to the 
Coxeter group P3m1, the product RI RI gets infinite order. There is no element of order 6 
in Aut(&) and so the corresponding preimages in P 6 ,  P6m have order CO. 

If the transversals under the action of the 17 space groups on the plane are connected at 
corresponding edges, one obtains the 17 orbifolds described by Montesinos [3 ] ,  p 8&2. For 
P1 we again find a torus, and any other orbifold admits an unfolding into an appropriate 
torus. The orbifold for the example Pg is Klein’s bottle. If we extend the notion of the 
quantized torus mentioned in the introduction, each of the 17 groups G provides a quantum 
version of the corresponding orbifold. 

One field of application for non-commutative crystallography are quasicrystals [6]. 
Other applications, among them to the theory of dislocations, are under study. 
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