Space groups on the quantum torus

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 286405
(http://iopscience.iop.org/0305-4470/28/22/016)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 01:58

Please note that terms and conditions apply.

Space groups on the quantum torus

Peter Kramer
Institut fưr Theoretische Physik der Universität Tübingen, Tübingen, Germany

Received 9 May 1995, in final form 9 August 1995

Abstract

Space groups in two dimension arise from the commutative translation group Z^{2} and its automorphisms in $G L(2, Z)$. From the free group F_{2} and its automorphisms we construct 17 non-commutative groups and their homomorphisms to the 17 space groups with commutative translations.

1. Introduction

Any crystallographic space group G in 2D acts on the plane R^{2} and admits a translation group with two commuting and independent generators. The translation group is isomorphic to Z^{2}. The transversal (set of orbit representatives) of the action of the subgroup $Z^{2}<G$ on R^{2} is the unit cell R^{2} / Z^{2} which, upon appropriate identification of the edges, becomes the torus. The two generators of Z^{2} generate the homotopy group of the torus.

A non-commutative scheme is obtained if the translation group Z^{2} is replaced by the free group F_{2} with two generators $\left\langle x_{1}, x_{2}\right\rangle$. In the context of non-commutative geometry with operator algebras proposed by Connes [1], the action and group algebra of F_{2} have led to the notion of a 'quantized torus', cf Effros [2] and [1, p340-7]. Note that this differs from the concept of a quantum group which involves a deformation parameter.

In crystallographic terms, the group Z^{2} associated with the torus is denoted by $P 1$. We denote its non-commutative generalization associated with the quantum torus by $\mathcal{P} 1=F_{2}$ and look for other non-commutative space groups. We construct groups which
(1) admit an at least two-generator subgroup of F_{2}, and
(2) admit a homomorphism to one of the 17 space groups of 2D crystallography.

2. The automorphisms of the free group

We shall work with elements and subgroups of $\operatorname{Aut}\left(F_{n}\right)$ and its action on F_{n}. Nielsen [4] showed that $\operatorname{Aut}\left(F_{n}\right)$ is finitely generated. We shall use the involutive generators and the subgroup relations given in [5]. For general n, the group F_{n} is isomorphic to $\operatorname{Inn}\left(F_{n}\right)$. We denote by $\left(T_{1}, T_{2}, \ldots\right\rangle$ the images in $\operatorname{Aut}\left(F_{n}\right)$ of the generators $\left(x_{1}, x_{2}, \ldots\right)$ under this isomorphism and interpret them as non-commutative translations. There are no finite-order elements in $\operatorname{Inn}\left(F_{n}\right)$, so we must look for them in the cosets. A method for finding the elements $g \in \operatorname{Aut}\left(F_{n}\right)$ of finite order is described by McCool [7]. For $H<\operatorname{Aut}\left(F_{n}\right)$ of finite order, we can construct the semidirect product subgroup $\left(\operatorname{Inn}\left(F_{n}\right) \times_{s} H\right)<\operatorname{Aut}\left(F_{n}\right)$ which we call a symmorphic NC space group. The relation to crystallographic space groups
is governed by the two homomorphisms

$$
\begin{array}{ll}
\operatorname{hom}_{1}: & F_{n} \rightarrow Z^{n} \\
\operatorname{hom}_{2}: & \operatorname{Aut}\left(F_{n}\right) \rightarrow G L(n, Z)
\end{array}
$$

Given an element of F_{n}, that is a word $w\left(x_{1}, x_{2}, \ldots\right)$, its image under the Abelianization hom m_{1} is found from the power sums ($n_{1}(w), n_{2}(w), \ldots$) of the generators x_{1}, x_{2}, \ldots in w. An automorphism $\phi \in \operatorname{Aut}\left(F_{n}\right)$ is specified by giving the images $y_{1}\left(x_{1}, x_{2}, \ldots\right), y_{2}\left(x_{1}, x_{2}, \ldots\right), \ldots$ We compose automorphisms according to Nielsen [4]. The image of ϕ under hom m_{2} is an $n \times n$ element from the matrix group $G L(n, Z)$ whose entries are the power sums. In what follows we consider $n=2,3$.

3. 17 non-commutative space groups

The homomorphism hom 2 allows one to search for preimages of the space groups in the plane. A candidate for a non-commutative space group found in this way will be denoted by $\mathcal{G}<\operatorname{Aut}\left(F_{2}\right)$. The 17 space groups in the plane were described in terms of sets of generators and relations by Coxeter and Moser [8]. We construct a preimage \mathcal{G} for each space group G, with the same set of generators as Coxeter and Moser. The relators \mathcal{R} are checked within $\operatorname{Aut}\left(F_{2}\right)$ and fall into two classes: relators \mathcal{R}_{1} equal to unity both in \mathcal{G} and in G, and relators \mathcal{R}_{2}, equal to unity in G. The pairs of space groups are then $\mathcal{G}=\left\langle\ldots \mid \mathcal{R}_{1}\right\rangle$ and $G=\left\langle\ldots \mid \mathcal{R}_{1}, \mathcal{R}_{2}\right\rangle$, respectively. The relators \mathcal{R}_{2} determine in \mathcal{G} the kernel $\operatorname{ker}(\mathrm{hom}) \triangleleft \mathcal{G}$ of the specific homomorphism hom : $\mathcal{G} \rightarrow G$. We show that the relators \mathcal{R}_{2} can always be reduced to the commutator $K\left(\left(T_{1}\right)^{ \pm 1},\left(T_{2}\right)^{ \pm 1}\right)$, even if T_{1}, T_{2} do not belong to the non-commutative translation group of \mathcal{G}. Any space group G is now a factor group

$$
G=\mathcal{G} / \operatorname{ker}(\mathrm{hom})
$$

We give the 17 space groups in the order and notation of the International tables [9]. For each group we first give alternative sets of generators $\langle a\rangle,\langle b\rangle, \ldots$, as in [8], with some changes of notation to avoid symbols used for $\operatorname{Aut}\left(F_{2}\right)$. We use alternative sets of generators to display representative elements for each space group. Under (hom) ${ }^{-1}$ we give in the next row a preimage in $\operatorname{Aut}\left(F_{2}\right)$ for each generator, compare also section 4. Under \mathcal{R} we give the relators $\mathcal{R}=\left(\mathcal{R}_{1}, \mathcal{R}_{2}\right)$. In the row that follows we give under ker for the relators \mathcal{R}_{2} their expressions in $\operatorname{Aut}\left(F_{2}\right)$. They determine elements of infinite order in \mathcal{G}.
$\mathcal{P} 1$

(a)	X	Y
(hom)	T_{1}	T_{2}^{-1}
\mathcal{R}	$X Y X^{-1} Y^{-1}$	
ker	$K\left(T_{1}, T_{2}^{-1}\right)$	

P2

(a)	X	Y	T	
(hom)	T_{1}	T_{2}^{-1}	$\sigma_{1} \sigma_{2}$	
\mathcal{R}	T^{2}	$T X T X$	$T Y T Y$	$X Y X^{-1} Y^{-1}$
ker				$K\left(T_{1}, T_{2}^{-1}\right)$

$\langle b\rangle$	$U_{1}=Y T$	$U_{2}=T$	$U_{3}=X U_{2}$	
(hom) ${ }^{-1}$	S_{3}	S_{2}	S_{1}	
\mathcal{R}	$\left(U_{1}\right)^{2}$	$\left(U_{2}\right)^{2}$	$\left(U_{3}\right)^{2}$	$\left(U_{1} U_{2} U_{3}\right)^{2}$
ker				$K\left(T_{2}^{-1}, T_{1}\right)$

$\mathcal{P} m$

$\langle a\rangle$	X	Y	R	
(hom)				
\mathcal{R}	T_{1}	T_{2}^{-1}	σ_{1}	
ker	R^{2}	$R X R X$	$R Y R Y^{-1}$	$X Y X^{-1} Y^{-1}$
				$K\left(T_{1}, T_{2}^{-1}\right)$

(b) $\quad R \quad R^{\prime}=R X \quad Y$
$(\mathrm{hom})^{-1} \quad \sigma_{1} \quad \sigma_{1} T_{1} \quad T_{2}^{-1}$
\mathcal{R}
$\left(R^{\prime}\right)^{2}$ $R Y R Y^{-1} \quad R^{\prime} Y R^{\prime} Y^{-1}$ ker
$K\left(T_{1}^{-1}, T_{2}^{-1}\right)$
$\mathcal{P g}$

$\langle a\rangle$	X	P
(hom)		
\mathcal{R}	$T_{2} T_{1}$	$T_{1} c_{13}$
ker	$P^{-1} X P X$	
	$K\left(T_{2}, T_{1}^{-1}\right)$	

$\langle b\rangle \quad P \quad Q=P X$
(hom) $^{-1} \quad T_{1} c_{13} \quad c_{13} T_{1}$
\mathcal{R}
$P^{2} Q^{-2}$
ker $\quad K\left(T_{3}, T_{2}^{-1}\right)$

Cm

(a)	P	Q	R
(hom) ${ }^{-1}$	$T_{1} c_{13}$	$c_{13} T_{1}$	c_{13}
\mathcal{R}	R^{2}	$R P R Q^{-1}$	$P^{2} Q^{-2}$
ker			$K\left(T_{1}, T_{2}^{-1}\right)$

〈b $\rangle \quad R \quad S=P R$

(hom)		
\mathcal{R}	c_{13}	T_{1}
	R^{2}	$(S R)^{2}(R S)^{-2}$

ker $\quad K\left(T_{1}, T_{2}^{-1}\right)$
$\mathcal{P} 2 \mathrm{~mm}$

$\langle a\rangle$	Y	R	R^{\prime}	
(hom) ${ }^{-1}$	T_{1}^{-1}	$\sigma_{2} T_{2}$	σ_{2}	R_{2}
\mathcal{R}	R^{2}	$\left(R^{\prime}\right)^{2}$	$\left(R_{2}\right)^{2}$	σ_{1}
ker				$R^{\prime} Y R^{\prime} Y^{-1}$
\mathcal{R}	$R_{2} R R_{2} R$	$R_{2} Y R_{2} Y$	$R Y R Y^{-1}$	$R_{2} R^{\prime} R_{2} R^{\prime}$
ker			$K\left(T_{2}^{-1}, T_{1}^{-1}\right)$	
(b〉	$R_{1}=R$	R_{2}	$R_{3}=R^{\prime}$	$R_{4}=R_{2} Y$
(hom) ${ }^{-1}$	$\sigma_{2} T_{2}$	σ_{1}	σ_{2}	$T_{1} \sigma_{1}$
\mathcal{R}	$\left(R_{1}\right)^{2}$	$\left(R_{2}\right)^{2}$	$\left(R_{3}\right)^{2}$	$\left(R_{4}\right)^{2}$
ker				
\mathcal{R}	$\left(R_{1} R_{2}\right)^{2}$	$\left(R_{2} R_{3}\right)^{2}$	$\left(R_{3} R_{4}\right)^{2}$	$\left(R_{4} R_{1}\right)^{2}$
ker				$K\left(T_{1}, T_{2}^{-1}\right)$

$\langle b$
(hom)
\mathcal{R}
$\left(R_{1}\right)^{2} \quad\left(R_{2}\right)^{2}$
$\left(R_{3}\right)^{2}$
$T_{1} \sigma_{1}$ $\left(R_{4}\right)^{2}$
ker
ker
$K\left(T_{1}, T_{2}^{-1}\right)$
$\mathcal{P} 2 m g$

$\{a\rangle$	P	Q	R	
(hom) $^{-1}$	$T_{1} c_{13}$	$c_{13} T_{1}$	$m^{\prime \prime}$	
\mathcal{R}	R^{2}	$R P R P$	$R Q R Q$	$P^{2} Q^{-2}$
ker				$K\left(T_{1}, T_{2}^{-1}\right)$

(b) $\quad V_{1}=P R \quad V_{2}=Q R \quad R$
(hom) ${ }^{-1} \quad T_{1} c_{13} m^{\prime \prime} \quad c_{13} T_{1} m^{\prime \prime} \quad m^{\prime \prime}$
\mathcal{R}
$\left(V_{1}\right)^{2}$
$\left(V_{2}\right)^{2} \quad R^{2}$
$\left(V_{2} R V_{2}\right)^{-1}\left(V_{1} R V_{1}\right)$
ker
$K\left(T_{2}^{-1}, T_{1}\right)$

P2gg

(a)	P	Q	T
(hom)	P	$T_{1} c_{13}$	$c_{13} T_{1}$
\mathcal{R}	T^{2}	$T P T Q$	$c_{13} m^{\prime \prime}$
ker			$P^{2} Q^{-2}$
			$K\left(T_{1}, T_{2}^{-1}\right)$

$\langle b\rangle$	P	$O=P T$
(hom) ${ }^{-1}$	$T_{1} c_{13}$	$T_{1} m^{\prime \prime}$
\mathcal{R}	$(P O)^{2}$	$\left(P^{-1} O\right)^{2}$
ker	$K\left(T_{1}, T_{2}^{-1}\right)$	

C 2 mm

$\{a\rangle$	R_{1}	R_{2}	R_{3}	R_{4}	T
(hom $)^{-1}$	$S_{1} m^{\prime \prime} S_{1}$	c_{13}	$m^{\prime \prime}$	$S_{1} c_{13} S_{1}$	S_{1}
\mathcal{R}	$\left(R_{1}\right)^{2}$	$\left(R_{2}\right)^{2}$	$\left(R_{3}\right)^{2}$	$\left(R_{4}\right)^{2}$	T^{2}

ker

\mathcal{R}	$\left(R_{1} R_{2}\right)^{2}$	$\left(R_{2} R_{3}\right)^{2}$	$\left(R_{3} R_{4}\right)^{2}$	$\left(R_{4} R_{1}\right)^{2}$	$T R_{1} T R_{3}$	$T R_{2} T R_{4}$
ker	$K\left(T_{1}, T_{2}^{-1}\right)$		$K\left(T_{2}, T_{1}\right)$			

$\langle b\rangle$	R_{1}	R_{2}	T		
(hom) ${ }^{-1}$	$S_{1} m^{\prime \prime} S_{1}$	c_{13}	S_{1}		
\mathcal{R}	$\left(R_{1}\right)^{2}$	$\left(R_{2}\right)^{2}$	T^{2}	$\left(R_{1} R_{2}\right)^{2}$	$\left(R_{1} T R_{2} T\right)^{2}$
ker				$K\left(T_{1}, T_{2}^{-1}\right)$	

$\mathcal{P} 4$

$\langle a\rangle$	U_{1}	U_{2}	U_{3}	U_{4}	S
(hom)					
\mathcal{R}	S_{3}	$S_{2} S_{1} S_{2}$	$S_{2} S_{3} S_{2}$	S_{1}	$c_{13} \sigma_{1}$
ker	$\left(U_{1}\right)^{2}$	$\left(U_{2}\right)^{2}$	$\left(U_{3}\right)^{2}$	$\left(U_{4}\right)^{2}$	
\mathcal{R}					
ker	S^{4}	$S^{-i} U_{4} S^{i} U_{i}^{-1}$	$U_{1} U_{2} U_{3} U_{4}$		
			$K\left(T_{2}^{-1}, T_{1}\right)$		

$\langle b\rangle$	S	$T U_{4}$	
(hom) $)^{-1}$	$c_{13} \sigma_{1}$	S_{1}	
\mathcal{R}	S^{4}	T^{2}	$(S T)^{4}$
ker			$K\left(T_{2}, T_{1}\right)$

P4mm

$\langle a\rangle$	R_{1}	R_{2}	R_{3}	R_{4}	R
$(\text { hom })^{-1}$	$\sigma_{2} T_{2}$	σ_{1}	σ_{2}	$T_{1} \sigma_{1}$	c_{13}
\mathcal{R}	$\left(R_{1}\right)^{2}$	$\left(R_{2}\right)^{2}$	$\left(R_{3}\right)^{2}$	$\left(R_{4}\right)^{2}$	R^{2}

ker
\mathcal{R}

ker			$K\left(T_{1}, T_{2}^{-1}\right)$

$\mathcal{R} \quad R R_{1} R R_{4} \quad R R_{2} R R_{3}$
ker
$\begin{array}{cccc}\langle b\rangle & R & R_{1} & R_{2}\end{array}$
$\left(\begin{array}{llll}(\mathrm{hom})^{-1} & c_{13} & \sigma_{2} T_{2} & \sigma_{1}\end{array}\right.$
\mathcal{R}
ker

P4gm

$\langle a\rangle$	R_{1}	R_{2}	R_{3}	R_{4}	S
(hom)		$\sigma_{2} T_{2}$	$\sigma_{1} T_{1}$	$T_{2} \sigma_{2}$	$T_{1} \sigma_{1}$

(b) $\quad R=R_{4} \quad S$
$(\text { hom })^{-1} \quad T_{1} \sigma_{1} \quad c_{13} \sigma_{1}$
$\mathcal{R} \quad R^{2} \quad S^{4} \quad\left(R S^{-1} R S\right)^{2}$
ker

- $K\left(T_{1}, T_{2}^{-1}\right)$

P3

$\langle a\rangle$	U_{1}	U_{2}	U_{3}	
(hom)				
\mathcal{R}	$c_{12} c_{23}$	$c_{12} c_{23} T_{1}$	$T_{1}^{-1} c_{12} c_{23}$	
ker	$\left(U_{1}\right)^{3}$	$\left(U_{2}\right)^{3}$	$\left(U_{3}\right)^{3}$	$U_{1} U_{2} U_{3}$
				$K\left(T_{1}^{-1}, T_{2}^{-1}\right)$

$\langle b\rangle$	U_{1}	U_{2}	
$(\mathrm{hom})^{-1}$	$c_{12} c_{23}$	$c_{12} c_{23} T_{1}$	
\mathcal{R}	$\left(U_{1}\right)^{3}$	$\left(U_{2}\right)^{3}$	$\left(U_{1} U_{2}\right)^{3}$
ker			$K\left(T_{2}^{-1}, T_{1}^{-1}\right)$

$\mathcal{P} 3 m 1$
$\begin{array}{llll}\langle a & U_{1} & U_{2} & R\end{array}$
(hom) $^{-1} \quad c_{12} c_{23} \quad c_{12} c_{23} T_{1} \quad c_{13}$
$\mathcal{R} \quad\left(U_{1}\right)^{3} \quad\left(U_{2}\right)^{3} \quad\left(U_{1} U_{2}\right)^{3} \quad R^{2} \quad R U_{1} R U_{1} \quad R U_{2} R U_{2}$ ker $K\left(T_{2}^{-1}, T_{1}^{-1}\right)$
$\langle b$
b) $\quad R_{1}=R U_{2} \quad R_{2}=U_{1} R \quad R_{3}=R$

$(\text { hom })^{-1}$	$c_{12} T_{1}$	c_{23}	c_{13}
\mathcal{R}	$\left(R_{1}\right)^{2}$	$\left(R_{2}\right)^{2}$	$\left(R_{3}\right)^{2}$

ker
$\mathcal{R} \quad\left(R_{1} R_{2}\right)^{3} \quad\left(R_{2} R_{3}\right)^{3} \quad\left(R_{3} R_{1}\right)^{3}$
ker $\quad K\left(T_{1}^{-1}, T_{2}^{-1}\right)$

$\mathcal{P 3 1 m}$					
$(a\rangle$ U_{1} U_{2} R (hom) ${ }^{-1}$ $c_{12} c_{23}$ $c_{12} c_{23} T_{1}$ $m^{\prime \prime}$ \mathcal{R} $\left(U_{1}\right)^{3}$ $\left(U_{2}\right)^{3}$ R^{2} ker $R U_{1} R U_{2}$	$\left(U_{1} U_{2}\right)^{3}$				
$\langle b\rangle$	U_{1}	R			$K\left(T_{2}^{-1}, T_{1}^{-1}\right)$
(hom) ${ }^{-1}$	$c_{13} c_{12}$	$m^{\prime \prime}$			
\mathcal{R}	$\left(U_{1}\right)^{3}$	R^{2}	$\left(R U_{1}^{-1} R U_{1}\right)^{3}$		
ker			$K\left(T_{2}, T_{1}\right)$		

P6

$\langle a\rangle$	U_{1}	U_{2}	T		
(hom) $^{-1}$	$c_{13} c_{12}$	$c_{13} c_{12} T_{1}$	S_{2}		
\mathcal{R}	$\left(U_{1}\right)^{3}$	$\left(U_{2}\right)^{3}$	$\left(U_{1} U_{2}\right)^{3}$	T	$T U_{1} T U_{2}^{-1}$
ker			$K\left(T_{2}^{-1}, T_{1}^{-1}\right)$		
$\langle b\rangle$	U_{1}	T			
(hom)	$c_{13} c_{12} T_{1}$	S_{2}			
\mathcal{R}	$\left(U_{1}\right)^{3}$	T^{2}	$\left(U_{1} T\right)^{6}$		
ker			$K\left(T_{2}^{-1}, T_{1}^{-1}\right)$		

P6m
$\begin{array}{lllll}\text { (a) } & R_{1} & R_{2} & R_{3} & R \\ \text { (hom) } & { }^{-1} & c_{12} T_{1} & c_{23} & c_{13} \\ c_{13}\end{array}$
$\mathcal{R} \quad\left(R_{1}\right)^{2}\left(R_{2}\right)^{2}\left(R_{3}\right)^{2} R^{2}\left(R_{1} R_{2}\right)^{3} \quad\left(R_{2} R_{3}\right)^{3}\left(R_{3} R_{1}\right)^{3} R R_{1} R R_{2} R R_{3} R R_{3}$
ker $K\left(T_{1}^{-1}, T_{2}^{-1}\right)$.
We check the condition (1) given in the introduction. In equation (18) we give for 13 space groups the construction of T_{1}, T_{2} from its generators.

	$\mathcal{P} 1$	$\mathcal{P} 2$	$\mathcal{P} m$	$\mathcal{C} m$	$\mathcal{P} 2 m m$	$\mathcal{C} 2 m m$	
$T_{1}:$	X	\cdot	X	$P R$	Y^{-1}	$T R_{2} R_{3}$	
$T_{2}:$	Y^{-1}	\cdot	Y^{-1}	$(R P)^{-1}$	$R^{\prime} R$	$R_{3} T R_{2}$	
	$\mathcal{P} 4$	$\mathcal{P} 4 m m$	$\mathcal{P} 3$	$\mathcal{P} 3 m 1$	$\mathcal{P} 31 m$	$\mathcal{P} 6$	$\mathcal{P} 6 m$
$T_{1}:$	$U_{4} S^{2}$	$R_{4} R_{2}$	$\left(U_{1}\right)^{-1} U_{2}$	\cdot	\cdot	$\left(U_{1}\right)^{-1} U_{2}$	$R_{3} R_{2} R_{3} R_{1}$
$T_{2}:$	$S^{2} U_{1}$	$R_{3} R_{1}$	$U_{2}\left(U_{1}\right)^{-1}$	\cdot	.	$U_{2}\left(U_{1}\right)^{-1}$	$R_{3} R_{1} R_{3} R_{2}$.

It follows that the group $\operatorname{Inn}\left(F_{2}\right)$ forms a subgroup of these 13 groups \mathcal{G}. The nonsymmorphic group $\mathcal{P} g$ is the first exception. Its generators P, Q are not in $\operatorname{Inn}\left(F_{2}\right)$ but yield the four elements $T_{1}^{2}=P Q, T_{1} T_{2}=P Q^{-1}, T_{2} T_{1}=P^{-1} Q, T_{2}^{2}=P^{-1} Q^{-1}$ of $\operatorname{Inn}\left(F_{2}\right)$. These four elements generate the subgroup of words of even length in $\operatorname{Inn}\left(F_{2}\right)$. Due to the presence of the generators P, Q, the same holds true for the groups $\mathcal{P} 2 m g, \mathcal{P} 2 g g, \mathcal{P} 4 g m$. Upon Abelianization we are of course left with two, not four translations. With this splitting into $13+4$, all groups \mathcal{G} match condition (1) given in the introduction.

4. The geometric representation

We pass to a geometric representation of the space groups. It is shown in [5] that the group $\operatorname{Aut}\left(F_{2}\right)$ may be lifted into an isomorphic image in $\operatorname{Aut}\left(F_{3}\right)$. Upon lifting an element of $\operatorname{Aut}\left(F_{2}\right)$ into $\operatorname{Aut}\left(F_{3}\right)$ and then applying hom , one obtains a 3×3 block triangular 2, matrix representative for the space group element. In the columns of the following (19)
we give for the generators $\left\langle c_{23}, c_{13}, \sigma_{1}\right\rangle$ of the lifted group $\operatorname{Aut}\left(F_{2}\right)$ the images $\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ of $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$, each followed by the three power sums. The image under hom ${ }_{2}$ is then the 3×3 matrix in $G L(3, Z)$ formed from the three rows:

e	c_{23}	hom $_{2}$		c_{13}	hom $_{2}$		σ_{1}	hom $_{2}$				
x_{1}	$x_{1} x_{2}$	1	1	0	$\left(x_{2}\right)^{-1}$	0	-1	0	$\left(x_{1}\right)^{-1}$	-1	0	0
x_{2}	$\left(x_{2}\right)^{-1}$	0	-1	0	$\left(x_{1}\right)^{-1}$	-1	0	0	x_{2}	0	1	0
x_{3}	$x_{2} x_{3}$	0	1	1	$x_{1} x_{2} x_{3}$	1	1	1	x_{3}	0	0	1.

In the expressions for the space group elements we use the following short-hand symbols, part of which appear in relation to subgroups of $\operatorname{Aut}\left(F_{3}\right)$ [5]. We express these automorphisms as functions of the generators as follows:

$$
\begin{array}{lll}
c_{12}:=c_{23} c_{13} c_{23} & \sigma_{2}:=c_{13} \sigma_{1} c_{13} & m^{\prime \prime}:=\sigma_{1} c_{13} \sigma_{1} \\
S_{2}:=\left(c_{13} \sigma_{1}\right)^{2} & S_{3}:=c_{23} S_{2} c_{23} & S_{1}:=c_{12} S_{2} c_{12} \tag{20}\\
T_{1}:=S_{1} S_{2} & T_{2}:=S_{2} S_{3} . &
\end{array}
$$

The action on $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ and the image under hom $_{2}$ can be computed by group multiplication from these expressions and from (19). For convenience we give some results of this computation:

\[

\]

By applying a matrix from $G l(3, Z)$ from the left to a column formed by three vectors $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$, which geometrically represent the algebraic generators of F_{3}, one obtains a linear action of the space group element on the plane spanned by $\left\langle x_{1}, x_{2}\right\rangle$. The third vector can then be suppressed. The automorphisms T_{1}, T_{2} under hom ${ }_{2}$ are seen to map into translations by twice the length of the vectors which represent $\left\langle x_{1}, x_{2}\right\rangle$. In the following figures, the two vectors have been adapted so that the torus or unit cell corresponds to the setting of [9]. The rotation axes, and the generators of mirror and glide lines (full and broken lines) for each of the 17 space groups, are shown on the right, with symbols

Figure 1. $\mathcal{P} 1$ and $P 1$.

Figure 2. $P 2$ and $P 2$.

Figure 3. \mathcal{P}_{m} and P_{m}.

Figure 4. \mathcal{P}_{g} and P_{g}.

Figure 5. Cm and Cm .

Figure 6. $P 2 \mathrm{~mm}$ and $P 2 \mathrm{~mm}$.

Figure 7. $\mathcal{P} 2 \mathrm{mg}$ and P 2 mg .

Figure 8. P2gg and P2gg.

Figure 9. $\mathcal{C} 2 \mathrm{~mm}$ and $C 2 \mathrm{~mm}$.

Figure 10. $\mathcal{P} 4$ and $P 4$.

Figure 11. $P 4 \mathrm{~mm}$ and $P 4 \mathrm{~mm}$.
which represent typical generators and combinations from [8] and appear in the algebraic expressions of section 3. The left-hand side of each figure gives in the same geometry the two vectors $\left\langle x_{1}, x_{2}\right\rangle$, where x_{1} starts at the end point of x_{2}. Symbols ∞ mark the preimages of infinite order in \mathcal{G} for finite-order elements in G.

Figure 12. $\mathcal{P} 4 g m$ and $P 4 g m$.

Figure 13. $\mathcal{P} 3$ and $P 3$.

Figure 14. $P 3 m 1$ and $P 3 m 1$.

Figure 15. $\mathcal{P} 31 \mathrm{~m}$ and P 31 m .

Figure 16. P6 and P6.

Figure 17. $P 6 m$ and $P 6 m$.

5. Conclusion

We give some comments on the results. The distribution of infinite-order preimages for the rotation axes can be seen from the figures. We omit a corresponding discussion of mirror and glide lines. The group $\mathcal{P} 2$ is the universal Coxeter group with three generators. In the groups $\mathcal{P} 4 g m, P 4 g m$ we mark one representative glide line. In $\mathcal{P} 3 m 1$ compared to the Coxeter group $P 3 m 1$, the product $R_{1} R_{2}$ gets infinite order. There is no element of order 6 in $\operatorname{Aut}\left(F_{2}\right)$ and so the corresponding preimages in $\mathcal{P} 6, \mathcal{P} 6 m$ have order ∞.

If the transversals under the action of the 17 space groups on the plane are connected at corresponding edges, one obtains the 17 orbifolds described by Montesinos [3], p 80-2. For $P 1$ we again find a torus, and any other orbifold admits an unfolding into an appropriate torus. The orbifold for the example $P g$ is Klein's bottle. If we extend the notion of the quantized torus mentioned in the introduction, each of the 17 groups \mathcal{G} provides a quantum version of the corresponding orbifold.

One field of application for non-commutative crystallography are quasicrystals [6]. Other applications, among them to the theory of dislocations, are under study.

Acknowledgments

It is a pleasure to dedicate the present work to Wolfram Prandl on the occasion of his 60th birthday. The author would like to thank the Physics Department of the Ben-Gurion University of the Negev at Beer Sheva for a Dozor Fellowship in March 1995. The work was completed during this stay. Many thanks are due to Shelomo I Ben-Abraham for helpful suggestions and discussions, to Ingo Brüggemann for checking part of the algebra, and to Tobias Kramer for substantial help in the preparation of the figures.

References

[1] Connes A 1994 Non-Commutative Geometry (New York: Academic)
[2] Effros E G 1989 Math. Intelligencer 11 27-34
[3] Montesinos J M 1985 Classical Tesselations and Three-Manifolds (Berlin: Springer)
[4] Nielsen J 1924 Math. Ann. 91 169-209
[5] Kramer P 1995 J. Phys. A: Math. Gen. 28 379-89
[6] Kramer P and Garcia-Escudero J 1995 Non-commutative models for quasicrystals Beyond Quasicrystals ed F Axel and D Gratias (Berlin: Springer) pp 55-73
[7] McCool J 1980 Trans. Am. Math. Soc. 260 309-18
[8] Coxeter H S M and Moser W O 1965 Generators and Relations for Discrete Groups (New York: Springer)
[9] Hahn Th (ed) 1983 International Tables for Crystallography vol A (Dordrecht: Reidel) pp 81-99

